Human challenge studies in the study of infectious diseases
What can deliberately infecting healthy people tell us about infectious diseases? How is this useful for developing treatments, and how do we manage the risks?
Who is working on a vaccine to prevent COVID-19 (coronavirus disease)? When might a COVID-19 vaccine become available? This is part of our rapid response content on COVID-19. You can view all our reporting on this topic under COVID-19. This article will be updated as the research progresses.
Vaccines are widely considered as the most effective public health intervention to protect people against infectious disease. When vaccine coverage in the population is high enough, the spread of infections can be reduced and, in some cases, eliminated.
The development of vaccines to prevent COVID-19 (coronavirus disease) caused by the new strain of coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) is already underway. This involves creating a vaccine that will cause an immune response without leading to the symptoms of the disease, testing its safety and efficacy in people, and developing a manufacturing process. Typically, vaccine discovery and development can take 10 to 15 years. However, this process can be fast-tracked if there is adequate funding and flexible regulatory pathways to facilitate testing and licensing of new vaccines. There are also newer vaccine technologies that use genetic material and that can be developed and manufactured much more rapidly.
Vaccines prime the immune system to respond rapidly to a later exposure to a specific virus or bacterium (pathogens). The immune system does this by recognising unique components of pathogens called antigens. There are several vaccine technologies to introduce antigens into the body to prime the immune system. For example, early vaccines used closely related pathogens that cause less serious disease (e.g. cowpox pathogens as a vaccine for smallpox). More recent approaches include the use of killed or modified virus, and the introduction of isolated viral proteins. One new technique involves the genes of the virus being carried into the body, often by non-pathogenic viruses. These allows for specific antigens to be produced in the body without exposure to the virus in question.
Scientists in China took a sample from a patient with COVID-19 and published the genetic sequence of the virus in January. This genetic recipe gives researchers crucial information about the evolution of the virus, the mechanisms through which it causes infection, and the genetic sequence of antigens that can be used in vaccines to stimulate an immune response. Previous work on vaccines for related viruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV), has given scientists a head start.
The safety and effectiveness of vaccines are thoroughly tested before they can be licensed for general use. Like other new medicines, vaccines are developed in two broad stages:
A discovery stage to identify antigens, create and test vaccine candidates in the laboratory, and to develop manufacturing protocols.
This comprises four stages:
A small group of healthy people (<100) is given the vaccine to make sure there are no safety concerns, to see how well it stimulates an immune response and to work out an effective dose.
The vaccine is tested in a larger group (several hundred people) to see whether the vaccine works consistently, to assess the immune response and to look for side effects.
The vaccine is studied on a much larger scale (several thousand people) under natural disease conditions. This produces enough data to identify rare side effects and to evaluate how well the vaccine works in the real world; does it generate enough immunity to prevent and reduce disease?
Licensing
Manufacturers apply for a license from regulatory bodies so that their vaccine can be marketed for human use.
After licensing, research continues to monitor any adverse effects and to determine long-term effectiveness.
Vaccine manufacture is a complex biological process. The rate at which doses of a vaccine can be made depends on how quickly the antigen can be made, or the genetic material that triggers antigen production in the body, and how much is needed in each dose. Special techniques can be used to maximise the number of doses from a given quantity. Batches of vaccine must also meet rigorous standards, to ensure consistency and quality.
It is expected that new COVID-19 vaccines will take 12–18 months to become commercially available, although it is likely that they could be made available earlier for emergency use, such as in healthcare workers or at-risk groups. It is also unclear what volume of vaccine could be made, although researchers engaged on current vaccine developments estimate that production for some could be at the million-dose scale by the end of 2020. Decisions about how to prioritise who will receive COVID-19 vaccine(s) are a key consideration. In the UK, this is the role of the Joint Committee on Vaccination and Immunisation (JCVI) which makes recommendations to the UK Government on national immunisation programmes.
On 23 March, the Government pledged £20m to the global Coalition for Epidemic Preparedness Initiative to fast-track vaccine development. This was followed by an announcement of an additional £210m, after the meeting of the G20 Leaders on 26 March. On 17 April the Government announced a new vaccine taskforce led by the Chief Scientific Adviser, with representatives from academia and industry. The taskforce seeks to support the rapid development of a vaccine, by facilitating rapid clinical trials, supporting testing and manufacturing capacity, reviewing regulations where necessary and developing plans for procurement and delivery of any successful vaccines.
Key highlights from UK research include:
Other international projects are in, or about to enter Phase 1 trials, with many others in preclinical development.
You can find more content from POST on COVID-19 here.
You can find more content on COVID-19 from the Commons Library here.
What can deliberately infecting healthy people tell us about infectious diseases? How is this useful for developing treatments, and how do we manage the risks?
How do our bodies defend against Covid-19? Read how immune responses differ across people, variants, reinfection, vaccination, and current immunisation strategies.
Research studies involving thousands of people have allowed scientists to test which drugs are effective at treating COVID-19. Several drug therapies are now available to treat people who are in hospital with COVID-19, or to prevent infections in vulnerable people becoming more serious. This briefing explains which drugs are available, the groups of people in which they are used and how they work. It also outlines the importance of monitoring the emergence of new variants and drug resistance.