Preparing for more extreme climate impacts and disasters
Climate change is expected to worsen the frequency, intensity and impacts of some extreme weather events requiring investment in disaster risk reduction and early warning systems.
Biodiversity is critical for maintaining current and future ecosystem service supply and continued loss increases risks of collapses in capacity as stresses such as climate change build.
Biodiversity and ecosystem services are necessities vital to maintaining human health and well-being, including food provision, water security and regulation of air quality.1 The latest Convention on Biological Diversity (CBD) Global Biodiversity Outlook Report finds natural habitats are continuing to disappear, rising numbers of species are threatened by changes in land use and climate, and that none of the 20 CBD Aichi Biodiversity Targets (2010) were met.2 The 2020 State of the World’s Plants and Fungi estimated that 140,000, or 39.4%, of vascular plants are threatened with extinction.3 The Living Planet Report 2020 highlighted that, on average, global populations of mammals, birds, fish, amphibians and reptiles fell by 68% between 1970 and 2016.4 At the 2 million lower estimate of the total number of species that exist on Earth, between 200 and 2,000 extinctions are projected to be occurring annually.5,6 The loss of species can be seen as an impact on its own, such as the loss of genetic resources related to crops and livestock.7 But it also poses the systemic risk that, in responses to stresses such as climate change, natural systems simplified by biodiversity loss may become more degraded within decades, reducing the provision of ecosystem services to people that depend on them. For example, the Amazon basin shifting to a drier savannah state.8,9,10
Over half (55%) of global GDP is dependent on high-functioning biodiversity and ecosystem services, but a new index has suggested that biodiversity declines risk ecosystem services collapsing in 20% of countries.11,8 The Dasgupta Review has set out that such risks associated with biodiversity loss have significant macroeconomic and financial implications, but the management of financial risks from such changes remains limited.12 A study of Fortune 500 companies found only five set specific targets to account for ecological risks.7,13 Nature-related risks are already affecting the global economy, such as wildlife diseases spilling over into humans.14,15,16,17 The Review classified the financial risks into: physical risks, such as changes in ecosystem services due to degradation of natural assets; litigation risks, such as legislation and fines from damage to natural assets; and transition risks, such as policy changes and shifts in social norms as the economy adjusts to more sustainable approaches.15
The Dasgupta Review also highlighted more support is needed for initiatives around nature-related financial risks, building upon the work on climate-related financial risks. Reducing the $500bn of environmentally damaging government subsidies globally and financing of activities that increase nature-related risks are the focus of several initiatives.18,19,20,3 These include the Taskforce on Nature-related Financial Disclosures that will create a framework to measure and publicly report the financial risks posed by nature, biodiversity and habitat degradation.21 For example, the loss of mangrove forests through their conversion for aquaculture, agriculture or coastal development increases the physical risk of coastal flooding. Mangroves currently reduce annual expected flood damages from tropical cyclones by $US 60 billion and protect 14 million people.22 It has been estimated that total annual global public and private funding supporting biodiversity conservation is outstripped by destructive agricultural, forestry and fishery subsidies by more than 3.5-fold,23 referred to as the biodiversity financing gap.24 Ending such subsidies was part of the 2010 CBD agreement, but only 19 countries have made progress.25
As well as better financial and economic decision-making, the main approach suggested to address biodiversity loss is expanding and connecting protected areas, with a CBD target of designating 30% of land and sea globally by 2030. Spatial assessments suggest approximately 50% of the terrestrial surface of the planet already has low human influence, although the majority of this is in cold or arid areas.26 Modelling suggests extending protected nature reserves, restoring degraded land and basing land-use decisions on landscape-level conservation planning could stem biodiversity loss from land use change and agriculture.27 An estimated 15% of land and 7% of the seas are under some level of protection.28 Studies have identified a further 35.3% of land critical for halting biodiversity loss and stabilising climate,29 and 43.6% as areas that require protection from damaging land uses.30
Biodiversity is critical for maintaining the capacity for current and future ecosystem service supply as stresses such as climate change continue to build.1 But anticipating threshold shifts in the distributions and abundances of species and the ecosystem services they support remains challenging.31,32,33,34
Most conservation research is focused on describing the state of nature or on mechanisms directly causing changes, rather than on designing or implementing responses.35 Such responses would include the technical and economic feasibility of restoring large areas to the state prior to, or in the absence of, extensive human land use in countries that have few remaining natural areas.36
Whether approaches such as linking biodiversity indicators with national economic accounts provide an effective means of considering biodiversity impacts in economic planning,37 or if more radical ‘post-growth’ localised approaches will be needed to equitably halt biodiversity losses.38
The UK Government states it failed to meet 14 of the 20 CBD Aichi Targets,39 but an NGO analysis suggests it failed 17, and has gone backwards in six.40 What policy approaches can successfully manage the pressures that continue to drive declines in biodiversity,41 such as the net increase of 3,376 km2 in urban area since 1990 in Great Britain?42
How to align agendas for conservation, climate, environmental justice and sustainable development, such as institutional structures that can identify local priorities for ecosystem delivery and establish incentives to integrate delivery across different ecosystem services at an appropriate scale?43,44,45
What are the challenges and opportunities of adopting radical approaches, such as species de-extinction?46
Failure to halt biodiversity loss will lead to catastrophic impacts on human well-being and severe economic harm that will require increasingly costly policy responses the longer action is delayed.15
Climate change is expected to worsen the frequency, intensity and impacts of some extreme weather events requiring investment in disaster risk reduction and early warning systems.
Implementing CBD requirements to protect 30% of the global ocean will need to be informed by what interventions can address pressures on marine ecosystems to be successful.
The global commons include the atmosphere, ice sheets, a stable climate, biodiversity and even space. What is their current state and how can they be protected?